

trio-parallel: CPU parallelism for Trio

Do you have CPU-bound work that just keeps slowing down your Trio [https://github.com/python-trio/trio] event loop no
matter what you try? Do you need to get all those cores humming at once? This is the
library for you!

The aim of trio-parallel is to use the lightest-weight, lowest-overhead, lowest-latency
method to achieve CPU parallelism of arbitrary Python code with a dead-simple API.

Resources

	License

	[image: MIT -or- Apache License 2.0] [https://github.com/richardsheridan/trio-parallel/blob/main/LICENSE]

	Documentation

	[image: Documentation] [https://trio-parallel.readthedocs.io/]

	Chat

	[image: Chatroom] [https://gitter.im/python-trio/general]

	Forum

	[image: Forum] [https://trio.discourse.group]

	Issues

	[image: Issues] [https://github.com/richardsheridan/trio-parallel/issues]

	Repository

	[image: Repository] [https://github.com/richardsheridan/trio-parallel]

	Tests

	[image: Tests] [https://github.com/richardsheridan/trio-parallel/actions?query=branch%3Amain]

	Coverage

	[image: Test coverage] [https://codecov.io/gh/richardsheridan/trio-parallel]

	Style

	[image: Code style] [https://github.com/psf/black]

	Distribution

	
[image: Latest Pypi version] [https://pypi.org/project/trio-parallel/]

[image: Supported Python versions] [https://pypi.org/project/trio-parallel/]

[image: Supported Python interpreters] [https://pypi.org/project/trio-parallel/]

Example

import functools
import multiprocessing
import trio
import trio_parallel

def loop(n):
 # Arbitrary CPU-bound work
 for _ in range(n):
 pass
 print("Loops completed:", n)

async def amain():
 t0 = trio.current_time()
 async with trio.open_nursery() as nursery:
 # Do CPU-bound work in parallel
 for i in [6, 7, 8] * 4:
 nursery.start_soon(trio_parallel.run_sync, loop, 10 ** i)
 # Event loop remains responsive
 t1 = trio.current_time()
 await trio.sleep(0)
 print("Scheduling latency:", trio.current_time() - t1)
 # This job could take far too long, make it cancellable!
 nursery.start_soon(
 functools.partial(
 trio_parallel.run_sync, loop, 10 ** 20, cancellable=True
)
)
 await trio.sleep(2)
 # Only explicitly cancellable jobs are killed on cancel
 nursery.cancel_scope.cancel()
 print("Total runtime:", trio.current_time() - t0)

if __name__ == "__main__":
 multiprocessing.freeze_support()
 trio.run(amain)

Additional examples and the full API are available in the documentation [https://trio-parallel.readthedocs.io/].

Features

	Bypasses the GIL for CPU-bound work

	Minimal API complexity

	looks and feels like Trio threads [https://trio.readthedocs.io/en/stable/reference-core.html#trio.to_thread.run_sync]

	Minimal internal complexity

	No reliance on multiprocessing.Pool, ProcessPoolExecutor, or any background threads

	Cross-platform

	print just works

	Seamless interoperation with

	coverage.py [https://coverage.readthedocs.io/]

	viztracer [https://viztracer.readthedocs.io/]

	cloudpickle [https://github.com/cloudpipe/cloudpickle]

	Automatic LIFO caching of subprocesses

	Cancel seriously misbehaving code via SIGKILL/TerminateProcess

	Convert segfaults and other scary things to catchable errors

FAQ

How does trio-parallel run Python code in parallel?

Currently, this project is based on multiprocessing subprocesses and
has all the usual multiprocessing caveats [https://docs.python.org/3/library/multiprocessing.html#programming-guidelines] (freeze_support, pickleable objects
only, executing the __main__ module).
The case for basing these workers on multiprocessing is that it keeps a lot of
complexity outside of the project while offering a set of quirks that users are
likely already familiar with.

The pickling limitations can be partially alleviated by installing cloudpickle [https://github.com/cloudpipe/cloudpickle].

Can I have my workers talk to each other?

This is currently possible through the use of multiprocessing.Manager,
but we don’t and will not officially support it.

This package focuses on providing
a flat hierarchy of worker subprocesses to run synchronous, CPU-bound functions.
If you are looking to create a nested hierarchy of processes communicating
asynchronously with each other, while preserving the power, safety, and convenience of
structured concurrency, look into tractor [https://github.com/goodboy/tractor].
Or, if you are looking for a more customized solution, try using trio.run_process
to spawn additional Trio runs and have them talk to each other over sockets.

Can I let my workers outlive the main Trio process?

No. Trio’s structured concurrency strictly bounds job runs to within a given
trio.run call, while cached idle workers are shutdown and killed if necessary
by our atexit handler, so this use case is not supported.

How should I map a function over a collection of arguments?

This is fully possible but we leave the implementation of that up to you. Think
of us as a loky [https://loky.readthedocs.io/en/stable/index.html] for your
joblib [https://joblib.readthedocs.io/en/latest/], but natively async and Trionic.
We take care of the worker handling so that you can focus on the best concurrency
for your application. That said, some example parallelism patterns can be found in
the documentation [https://trio-parallel.readthedocs.io/].

Also, look into aiometer [https://github.com/florimondmanca/aiometer]?

Contributing

If you notice any bugs, need any help, or want to contribute any code, GitHub issues [https://github.com/richardsheridan/trio-parallel/issues]
and pull requests are very welcome! Please read the code of conduct [https://trio.readthedocs.io/en/stable/code-of-conduct.html].

Navigation

	Reference
	Running CPU-bound functions in parallel

	Controlling Concurrency

	Cancellation and Exceptions

	Configuring workers

	Internal Esoterica

	Example concurrency patterns
	Parallel, ordered map and gather

	Async parallel processing pipeline

	Release history
	trio-parallel 1.2.2 (2024-04-24)

	trio-parallel 1.2.1 (2023-11-04)

	trio-parallel 1.2.0 (2022-10-29)

	trio-parallel 1.1.0 (2022-09-18)

	trio-parallel 1.0.0 (2021-12-04)

	trio-parallel 1.0.0b0 (2021-11-12)

	trio-parallel 1.0.0a2 (2021-10-08)

	trio-parallel 1.0.0a1 (2021-09-05)

	trio-parallel 1.0.0a0 (2021-07-22)

	trio-parallel 0.5.1 (2021-05-05)

	trio-parallel 0.5.0 (2021-05-02)

	trio-parallel 0.4.0 (2021-03-25)

	trio-parallel 0.3.0 (2021-02-21)

	trio-parallel 0.2.0 (2021-02-02)

Indices and tables

	Index

	Module Index

	Search Page

	Glossary [https://trio.readthedocs.io/en/stable/glossary.html#glossary]

Reference

This project’s aim is to use the lightest-weight, lowest-overhead, lowest latency
method to achieve parallelism of arbitrary Python code, and make it natively async for Trio.
Given that Python (and CPython in particular) has ongoing difficulties parallelizing
CPU-bound work in threads, this package dispatches synchronous function execution to
subprocesses. However, this project is not fundamentally constrained by that,
and will be considering subinterpreters, or any other avenue as they become available.

Running CPU-bound functions in parallel

The main interface for trio-parallel is run_sync():

	
await trio_parallel.run_sync(sync_fn: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], T], *args, cancellable: bool [https://docs.python.org/3/library/functions.html#bool] = False, limiter: CapacityLimiter [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CapacityLimiter] | None [https://docs.python.org/3/library/constants.html#None] = None) → T

	Run sync_fn(*args) in a separate process and return/raise its outcome.

This function is intended to enable the following:

	Circumventing the GIL to run CPU-bound functions in parallel

	Making blocking APIs or infinite loops truly cancellable through
SIGKILL/TerminateProcess without leaking resources

	Protecting the main process from unstable/crashy code

Currently, this is a wrapping of multiprocessing.Process [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process] that
follows the API of trio.to_thread.run_sync() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.to_thread.run_sync].
Other multiprocessing [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing] features may work but are not officially
supported, and all the normal multiprocessing [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing] caveats apply.
To customize worker behavior, use open_worker_context().

The underlying workers are cached LIFO and reused to minimize latency.
Global state of the workers is not stable between and across calls.

	Parameters:

	
	sync_fn – An importable or pickleable synchronous callable. See the
multiprocessing [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing] documentation for detailed explanation of
limitations.

	*args – Positional arguments to pass to sync_fn. If you need keyword
arguments, use functools.partial() [https://docs.python.org/3/library/functools.html#functools.partial].

	cancellable (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to allow cancellation of this operation.
Cancellation always involves abrupt termination of the worker process
with SIGKILL/TerminateProcess. To obtain correct semantics with CTRL+C,
SIGINT is ignored when raised in workers.

	limiter (None, or trio.CapacityLimiter [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CapacityLimiter]) – An object used to limit the number of simultaneous processes. Most
commonly this will be a CapacityLimiter [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CapacityLimiter], but any async
context manager will succeed.

	Returns:

	Any – Whatever sync_fn(*args) returns.

	Raises:

	
	BaseException [https://docs.python.org/3/library/exceptions.html#BaseException] – Whatever sync_fn(*args) raises.

	BrokenWorkerError – Indicates the worker died unexpectedly. Not encountered
 in normal use.

Note

trio_parallel.run_sync() does not work with functions defined at the REPL
or in a Jupyter notebook cell due to the use of the multiprocessing [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing] spawn
context… unless cloudpickle [https://github.com/cloudpipe/cloudpickle] is also installed!

A minimal program that dispatches work with run_sync() looks like this:

import trio, trio_parallel
from operator import add

async def parallel_add():
 return await trio_parallel.run_sync(add, 1, 2)

Guard against our workers trying to recursively start workers on startup
if __name__ == '__main__':
 assert add(1, 2) == trio.run(parallel_add) == 3

Just like that, you’ve dispatched a CPU-bound synchronous function to a worker
subprocess and returned the result! However, only doing this much is a bit pointless;
we are just expending the startup time of a whole python process to achieve the same
result that we could have gotten synchronously. To take advantage, some other task
needs to be able to run concurrently:

import trio, trio_parallel, time

async def check_scheduling_latency():
 for _ in range(10):
 t0 = trio.current_time()
 await trio.lowlevel.checkpoint()
 print(trio.current_time() - t0)

async def amain():
 async with trio.open_nursery() as nursery:
 nursery.start_soon(check_scheduling_latency)
 await trio_parallel.run_sync(time.sleep, 1)

if __name__ == "__main__":
 trio.run(amain)

The output of this script indicates that the Trio event loop is running smoothly.
Still, this doesn’t demonstrate much advantage over trio.to_thread.run_sync() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.to_thread.run_sync].
You can see for yourself by substituting the function calls, since the call
signatures are intentionally identical.

No, trio-parallel really shines when your function has significant CPU-intensive
work that regularly involves the python interpreter:

import trio, trio_parallel, time

def loop(i=0):
 deadline = time.perf_counter() + 1
 # Arbitrary CPU-bound work
 while time.perf_counter() < deadline:
 i += 1
 print("Loops completed:", i)

async def amain():
 async with trio.open_nursery() as nursery:
 for i in range(4):
 nursery.start_soon(trio_parallel.run_sync, loop)

if __name__ == "__main__":
 trio.run(amain)

This script should output a roughly equal number of loops completed for each process,
as opposed to the lower and unbalanced number you might observe using threads.

As with Trio threads, these processes are cached to minimize latency and resource
usage. Despite this, executing a function in a process can take orders of magnitude
longer than in a thread when dealing with large arguments or a cold cache.

import trio, trio_parallel

async def amain():
 t0 = trio.current_time()
 await trio_parallel.run_sync(bool)
 t1 = trio.current_time()
 await trio_parallel.run_sync(bool)
 t2 = trio.current_time()
 await trio_parallel.run_sync(bytearray, 10**8)
 t3 = trio.current_time()
 print("Cold cache latency:", t1-t0)
 print("Warm cache latency:", t2-t1)
 print("IPC latency/MB:", (t3-t2)/10**2)

if __name__ == '__main__':
 trio.run(amain)

Therefore, we recommend avoiding worker process dispatch
for synchronous functions with an expected duration of less than about 1 ms.

Controlling Concurrency

By default, trio-parallel will cache as many workers as the system has CPUs
(as reported by os.cpu_count() [https://docs.python.org/3/library/os.html#os.cpu_count]), allowing fair, maximal, truly-parallel
dispatch of CPU-bound work in the vast majority of cases. There are two ways to modify
this behavior. The first is the limiter argument of run_sync(), which
permits you to limit the concurrency of a specific function dispatch. In some cases,
it may be useful to modify the default limiter, which will affect all run_sync()
calls.

	
trio_parallel.current_default_worker_limiter()

	Get the default CapacityLimiter [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CapacityLimiter] used by
trio_parallel.run_sync().

The most common reason to call this would be if you want to modify its
total_tokens [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CapacityLimiter.total_tokens] attribute. This attribute
is initialized to the number of CPUs reported by os.cpu_count() [https://docs.python.org/3/library/os.html#os.cpu_count].

Cancellation and Exceptions

Unlike threads, subprocesses are strongly isolated from the parent process, which
allows two important features that cannot be portably implemented in threads:

	Forceful cancellation: a deadlocked call or infinite loop can be cancelled
by completely terminating the process.

	Protection from errors: if a call segfaults or an extension module has an
unrecoverable error, the worker may die but the main process will raise
a normal Python exception.

Cancellation

Cancellation of trio_parallel.run_sync() is modeled after
trio.to_thread.run_sync() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.to_thread.run_sync], with a cancellable keyword argument that
defaults to False. Entry is an unconditional checkpoint, i.e. regardless of
the value of cancellable. The only difference in behavior comes upon cancellation
when cancellable=True. A Trio thread will be abandoned to run in the background
while this package will kill the worker with SIGKILL/TerminateProcess:

import trio, trio_parallel, time

def hello_delayed_world():
 print("Hello")
 time.sleep(1.0)
 print("world!")

async def amain():
 # warm up thread/process caches
 await trio_parallel.run_sync(bool)
 await trio.to_thread.run_sync(bool)

 with trio.move_on_after(0.5):
 await trio_parallel.run_sync(hello_delayed_world, cancellable=True)

 with trio.move_on_after(0.5):
 await trio.to_thread.run_sync(hello_delayed_world, cancellable=True)

 # grace period for abandoned thread
 await trio.sleep(0.6)

if __name__ == '__main__':
 trio.run(amain)

We recommend to avoid using the cancellation feature
if loss of intermediate results, writes to the filesystem, or shared memory writes
may leave the larger system in an incoherent state.

Exceptions

	
exception trio_parallel.BrokenWorkerError

	Raised when a worker fails or dies unexpectedly.

This error is not typically encountered in normal use, and indicates a severe
failure of either trio-parallel or the code that was executing in the worker.
Some example failures may include segfaults, being killed by an external signal,
or failing to cleanly shut down within a specified grace_period. (See
atexit_shutdown_grace_period() and open_worker_context().)

Signal Handling

This library configures worker processes to ignore SIGINT to have correct semantics
when you hit CTRL+C, but all other signal handlers are left in python’s default
state. This can have surprising consequences if you handle signals in the main
process, as the workers are in the same process group but do not share the same
signal handlers. For example, if you handle SIGTERM in the main process to
achieve a graceful shutdown of a service [https://github.com/richardsheridan/trio-parallel/issues/348], a spurious BrokenWorkerError will
raise at any running calls to run_sync(). You will either
need to handle the exeptions, change the method you use to send signals, or configure
the workers to handle signals at initialization using the tools in the next section.

Configuring workers

By default, trio_parallel.run_sync() draws workers from a global cache
that is shared across sequential and between concurrent trio.run() [https://trio.readthedocs.io/en/stable/reference-core.html#trio.run]
calls, with workers’ lifetimes limited to the life of the main process. This
can be configured with configure_default_context():

	
trio_parallel.configure_default_context(idle_timeout=600.0, init=<class 'bool'>, retire=<class 'bool'>, grace_period=30.0, worker_type=WorkerType.SPAWN)

	Configure the default WorkerContext parameters associated with run_sync.

	Parameters:

	
	idle_timeout (float [https://docs.python.org/3/library/functions.html#float]) – The time in seconds an idle worker will
wait for a CPU-bound job before shutting down and releasing its own
resources. Pass math.inf [https://docs.python.org/3/library/math.html#math.inf] to wait forever. MUST be non-negative.

	init (Callable[[], bool [https://docs.python.org/3/library/functions.html#bool]]) – An object to call within the worker before waiting for jobs.
This is suitable for initializing worker state so that such stateful logic
does not need to be included in functions passed to
trio_parallel.run_sync(). MUST be callable without arguments.

	retire (Callable[[], bool [https://docs.python.org/3/library/functions.html#bool]]) – An object to call within the worker after executing a CPU-bound job.
The return value indicates whether worker should be retired (shut down.)
By default, workers are never retired.
The process-global environment is stable between calls. Among other things,
that means that storing state in global variables works.
MUST be callable without arguments.

	grace_period (float [https://docs.python.org/3/library/functions.html#float]) – The time in seconds to wait in the atexit handler for
workers to exit before issuing SIGKILL/TerminateProcess and raising
BrokenWorkerError. Pass math.inf [https://docs.python.org/3/library/math.html#math.inf] to wait forever. MUST be non-negative.

	worker_type (WorkerType) – The kind of worker to create, see WorkerType.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if this function is called outside the main thread.

Warning

This function is meant to be used once before any usage of run_sync.
Doing otherwise may (on POSIX) result in workers being leaked until
the main process ends, or (on Win32) having no effect until the next trio.run [https://trio.readthedocs.io/en/stable/reference-core.html#trio.run]!

This covers most use cases, but for the many edge cases, open_worker_context()
yields a WorkerContext object on which WorkerContext.run_sync() pulls workers
from an isolated cache with behavior specified by the class arguments. It is only
advised to use this if specific control over worker type, state, or
lifetime is required in a subset of your application.

	
async with trio_parallel.open_worker_context(idle_timeout=600.0, init=<class 'bool'>, retire=<class 'bool'>, grace_period=30.0, worker_type=WorkerType.SPAWN) as ctx

	Create a new, customized worker context with isolated workers.

The context will automatically wait for any running workers to become idle when
exiting the scope. Since this wait cannot be cancelled, it is more convenient to
only pass the context object to tasks that cannot outlive the scope, for example,
by using a Nursery [https://trio.readthedocs.io/en/stable/reference-core.html#trio.Nursery].

	Parameters:

	
	idle_timeout (float [https://docs.python.org/3/library/functions.html#float]) – The time in seconds an idle worker will
wait for a CPU-bound job before shutting down and releasing its own
resources. Pass math.inf [https://docs.python.org/3/library/math.html#math.inf] to wait forever. MUST be non-negative.

	init (Callable[[], bool [https://docs.python.org/3/library/functions.html#bool]]) – An object to call within the worker before waiting for jobs.
This is suitable for initializing worker state so that such stateful logic
does not need to be included in functions passed to
WorkerContext.run_sync(). MUST be callable without arguments.

	retire (Callable[[], bool [https://docs.python.org/3/library/functions.html#bool]]) – An object to call within the worker after executing a CPU-bound job.
The return value indicates whether worker should be retired (shut down.)
By default, workers are never retired.
The process-global environment is stable between calls. Among other things,
that means that storing state in global variables works.
MUST be callable without arguments.

	grace_period (float [https://docs.python.org/3/library/functions.html#float]) – The time in seconds to wait in __aexit__ for workers to
exit before issuing SIGKILL/TerminateProcess and raising BrokenWorkerError.
Pass math.inf [https://docs.python.org/3/library/math.html#math.inf] to wait forever. MUST be non-negative.

	worker_type (WorkerType) – The kind of worker to create, see WorkerType.

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] | TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if an invalid value is passed for an argument, such as a
 negative timeout.

	BrokenWorkerError – if a worker does not shut down cleanly when exiting the scope.

Warning

The callables passed to retire MUST not raise! Doing so will result in a
BrokenWorkerError at an indeterminate future
WorkerContext.run_sync() call.

	
class trio_parallel.WorkerContext

	A reification of a context where workers have a custom configuration.

Instances of this class are to be created using open_worker_context(),
and cannot be directly instantiated. The arguments to open_worker_context()
that created an instance are available for inspection as read-only attributes.

This class provides a statistics() method, which returns an object with the
following fields:

	idle_workers: The number of live workers currently stored in the context’s
cache.

	running_workers: The number of workers currently executing jobs.

	
await run_sync(sync_fn: Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], T], *args, cancellable: bool [https://docs.python.org/3/library/functions.html#bool] = False, limiter: CapacityLimiter [https://trio.readthedocs.io/en/stable/reference-core.html#trio.CapacityLimiter] = None) → T

	Run sync_fn(*args) in a separate process and return/raise its outcome.

Behaves according to the customized attributes of the context. See
trio_parallel.run_sync() for details.

	Raises:

	trio.ClosedResourceError [https://trio.readthedocs.io/en/stable/reference-core.html#trio.ClosedResourceError] – if this method is run on a closed context

One typical use case for configuring workers is to set a policy for taking a worker
out of service. For this, use the retire argument. This example shows how to
build (trivial) stateless and stateful worker retirement policies.

import trio, trio_parallel, os

def worker(i):
 print(i, "hello from", os.getpid())

def after_single_use():
 return True

WORKER_HAS_BEEN_USED = False

def after_dual_use():
 global WORKER_HAS_BEEN_USED
 if WORKER_HAS_BEEN_USED:
 return True # retire
 else:
 WORKER_HAS_BEEN_USED = True
 return False # don't retire... YET

async def amain():
 trio_parallel.current_default_worker_limiter().total_tokens = 4

 print("single use worker behavior:")
 async with trio_parallel.open_worker_context(retire=after_single_use) as ctx:
 async with trio.open_nursery() as nursery:
 for i in range(10):
 nursery.start_soon(ctx.run_sync, worker, i)

 print("dual use worker behavior:")
 async with trio_parallel.open_worker_context(retire=after_dual_use) as ctx:
 async with trio.open_nursery() as nursery:
 for i in range(10):
 nursery.start_soon(ctx.run_sync, worker, i)

 print("default behavior:")
 async with trio.open_nursery() as nursery:
 for i in range(10):
 nursery.start_soon(trio_parallel.run_sync, worker, i)

if __name__ == "__main__":
 trio.run(amain)

A more realistic use-case might examine the worker process’s memory usage (e.g. with
psutil [https://psutil.readthedocs.io/en/latest/]) and retire if usage is too high.

If you are retiring workers frequently, like in the single-use case, a large amount
of process startup overhead will be incurred with the default worker type. If your
platform supports it, an alternate WorkerType might cut that overhead down.

	
class trio_parallel.WorkerType

	An Enum of available kinds of workers.

Instances of this Enum can be passed to open_worker_context() or
configure_default_context() to customize worker startup behavior.

Currently, these correspond to the values of
multiprocessing.get_all_start_methods() [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.get_all_start_methods], which vary by platform.
WorkerType.SPAWN is the default and is supported on all platforms.
WorkerType.FORKSERVER is available on POSIX platforms and could be an
optimization if workers need to be killed/restarted often.
WorkerType.FORK is available on POSIX for experimentation, but not
recommended.

Internal Esoterica

You probably won’t use these… but create an issue if you do and need help!

	
trio_parallel.atexit_shutdown_grace_period(grace_period=30.0)

	Set the default worker cache shutdown grace period.

DEPRECATION NOTICE: this function has been superseded by
configure_default_context and will be removed in a future version

You might need this if you have a long-running atexit [https://docs.python.org/3/library/atexit.html#module-atexit] function, such as those
installed by coverage.py or viztracer.
This only affects the atexit [https://docs.python.org/3/library/atexit.html#module-atexit] behavior of the default context corresponding to
trio_parallel.run_sync(). Existing and future WorkerContext instances
are unaffected.

	Parameters:

	grace_period (float [https://docs.python.org/3/library/functions.html#float]) – The time in seconds to wait for workers to
exit before issuing SIGKILL/TerminateProcess and raising BrokenWorkerError.
Pass math.inf [https://docs.python.org/3/library/math.html#math.inf] to wait forever.

	
trio_parallel.default_context_statistics()

	Return the statistics corresponding to the default context.

Because the default context used by trio_parallel.run_sync is a private
implementation detail, this function serves to provide public access to the default
context statistics object.

Note

The statistics are only eventually consistent in the case of multiple trio
threads concurrently using trio_parallel.run_sync.

Example concurrency patterns

Parallel, ordered map and gather

import multiprocessing
import random

import trio
import trio_parallel

def twiddle(i):
 for j in range(50000):
 i *= random.choice((-1, 1))
 return i

async def parallel_map(fn, inputs, *args):
 results = [None] * len(inputs)

 async def worker(j, inp):
 results[j] = await trio_parallel.run_sync(fn, inp, *args)
 print(j, "done")

 async with trio.open_nursery() as nursery:
 for i, inp in enumerate(inputs):
 nursery.start_soon(worker, i, inp)

 return results

if __name__ == "__main__":
 multiprocessing.freeze_support()
 print(trio.run(parallel_map, twiddle, range(100)))

Async parallel processing pipeline

import binascii
import multiprocessing
import time
import secrets

import trio
import trio_parallel

async def to_process_map_as_completed(
 sync_fn,
 job_aiter,
 cancellable=False,
 limiter=None,
 *,
 task_status,
):
 if limiter is None:
 limiter = trio_parallel.current_default_worker_limiter()
 send_chan, recv_chan = trio.open_memory_channel(0)
 task_status.started(recv_chan)

 async def worker(job_item, task_status):
 # Backpressure: hold limiter for entire task to avoid
 # spawning too many workers
 async with limiter:
 task_status.started()
 result = await trio_parallel.run_sync(
 sync_fn,
 *job_item,
 cancellable=cancellable,
 limiter=trio.CapacityLimiter(1),
)
 await send_chan.send(result)

 async with send_chan, trio.open_nursery() as nursery:
 async for job_item in job_aiter:
 await nursery.start(worker, job_item)

async def data_generator(*, task_status, limiter=None):
 send_chan, recv_chan = trio.open_memory_channel(0)
 task_status.started(recv_chan)
 if limiter is None:
 limiter = trio_parallel.current_default_worker_limiter()
 async with send_chan:
 for j in range(100):
 # Just pretend this is coming from disk or network
 data = secrets.token_hex()
 # Inputs MUST be throttled with the SAME limiter as
 # the rest of the steps of the pipeline
 async with limiter:
 await send_chan.send((j, data))

def clean_data(j, data):
 time.sleep(secrets.randbelow(2) / 20)
 return j, data.replace("deadbeef", "f00dbeef")

def load_data(j, data):
 time.sleep(secrets.randbelow(2) / 20)
 return j, binascii.unhexlify(data)

def compute(j, data):
 time.sleep(secrets.randbelow(2) / 20)
 n = 0
 for value in data:
 if value % 2:
 n += 1
 return j, n

async def amain():
 i = 1
 t0 = trio.current_time()
 async with trio.open_nursery() as nursery:
 data_aiter = await nursery.start(data_generator)
 clean_data_aiter = await nursery.start(
 to_process_map_as_completed,
 clean_data,
 data_aiter,
)
 loaded_data_aiter = await nursery.start(
 to_process_map_as_completed,
 load_data,
 clean_data_aiter,
)
 computational_result_aiter = await nursery.start(
 to_process_map_as_completed,
 compute,
 loaded_data_aiter,
)
 async for result in computational_result_aiter:
 print(i, (trio.current_time() - t0) / i, *result)
 if result[1] <= 9:
 print("Winner! after ", trio.current_time() - t0, "seconds")
 nursery.cancel_scope.cancel()
 i += 1
 print("No extra-even bytestrings after ", trio.current_time() - t0, "seconds")

if __name__ == "__main__":
 multiprocessing.freeze_support()
 trio.run(amain)

Release history

trio-parallel 1.2.2 (2024-04-24)

Bugfixes

	Fixed a rare race condition during cleanup that could trigger unraisable error tracebacks. (#398 [https://github.com/richardsheridan/trio-parallel/issues/398])

	Made several internal changes that may make compatibility with future Trio versions more stable (#412 [https://github.com/richardsheridan/trio-parallel/issues/412])

trio-parallel 1.2.1 (2023-11-04)

Bugfixes

	Resolved a deprecation warning on python 3.12. (#380 [https://github.com/richardsheridan/trio-parallel/issues/380])

Deprecations and Removals

	Although python 3.7 has not been specifically broken, it is no longer tested in CI. (#389 [https://github.com/richardsheridan/trio-parallel/issues/389])

trio-parallel 1.2.0 (2022-10-29)

Features

	The behavior of the default context is now fully configurable, superseding atexit_shutdown_grace_period (#328 [https://github.com/richardsheridan/trio-parallel/issues/328])

Bugfixes

	Use tblib lazily to pass tracebacks on user exceptions. Previously, tracebacks would only be passed on the built-in python exceptions. (#332 [https://github.com/richardsheridan/trio-parallel/issues/332])

trio-parallel 1.1.0 (2022-09-18)

Features

	Add type hints for run_sync (#322 [https://github.com/richardsheridan/trio-parallel/issues/322])

	Use tblib to enable pickling of tracebacks between processes. Mainly, this
preserves context of exceptions including chained exceptions. (#323 [https://github.com/richardsheridan/trio-parallel/issues/323])

Bugfixes

	Prevent Ctrl+C from inducing various leaks and inconsistent states. (#239 [https://github.com/richardsheridan/trio-parallel/issues/239])

	Cleaned up names/qualnames of objects in the trio_parallel namespace. (#291 [https://github.com/richardsheridan/trio-parallel/issues/291])

Deprecations and Removals

	Removed python 3.6 support (#236 [https://github.com/richardsheridan/trio-parallel/issues/236])

trio-parallel 1.0.0 (2021-12-04)

Bugfixes

	Fixed a hang on failed worker subprocess spawns that mostly occurred upon
accidental multiprocessing recursive spawn. (#167 [https://github.com/richardsheridan/trio-parallel/issues/167])

	Fixed a hang on Windows when trying to use WorkerContext.run_sync() in sequential
and concurrent Trio runs. (#171 [https://github.com/richardsheridan/trio-parallel/issues/171])

Improved Documentation

	Revamped documentation with tested examples. (#168 [https://github.com/richardsheridan/trio-parallel/issues/168])

trio-parallel 1.0.0b0 (2021-11-12)

With this release I consider the project “feature complete”.

Features

	Added an API to view statistics about a WorkerContext, specifically counting
idle_workers and running_workers. (#155 [https://github.com/richardsheridan/trio-parallel/issues/155])

trio-parallel 1.0.0a2 (2021-10-08)

Features

	Opportunistically use cloudpickle to serialize jobs and results. (#115 [https://github.com/richardsheridan/trio-parallel/issues/115])

	Timeout arguments of open_worker_context(), idle_timeout and grace_period,
now work like trio timeouts, accepting any non-negative float [https://docs.python.org/3/library/functions.html#float] value. (#116 [https://github.com/richardsheridan/trio-parallel/issues/116])

	Worker process startup is now faster, by importing trio lazily (#117 [https://github.com/richardsheridan/trio-parallel/issues/117])

	open_worker_context() now returns a context object that can be used to run
functions explicitly in a certain context (WorkerContext.run_sync()) rather
than implicitly altering the behavior of trio_parallel.run_sync(). (#127 [https://github.com/richardsheridan/trio-parallel/issues/127])

trio-parallel 1.0.0a1 (2021-09-05)

Features

	Added configuration options for the grace periods permitted to worker caches upon
shutdown. This includes a new keyword argument for open_worker_context() and
a new top level function atexit_shutdown_grace_period(). (#108 [https://github.com/richardsheridan/trio-parallel/issues/108])

	open_worker_context() gained a new argument, init, and retire is no longer
called before the first job in the worker. (#110 [https://github.com/richardsheridan/trio-parallel/issues/110])

trio-parallel 1.0.0a0 (2021-07-22)

Features

	The behavior and lifetime of worker processes can now be customized with the open_worker_context() context manager. (#19 [https://github.com/richardsheridan/trio-parallel/issues/19])

trio-parallel 0.5.1 (2021-05-05)

Bugfixes

	Remove __version__ attribute to avoid crash on import when metadata is not available (#55 [https://github.com/richardsheridan/trio-parallel/issues/55])

trio-parallel 0.5.0 (2021-05-02)

Features

	trio_parallel.BrokenWorkerError now contains a reference to the underlying worker process which can be inspected e.g. to handle specific exit codes. (#48 [https://github.com/richardsheridan/trio-parallel/issues/48])

Bugfixes

	Workers are now fully synchronized with only pipe/channel-like objects, making it impossible to leak semaphores. (#33 [https://github.com/richardsheridan/trio-parallel/issues/33])

	Fix a regression of a rare race condition where idle workers shut down cleanly but appear broken. (#43 [https://github.com/richardsheridan/trio-parallel/issues/43])

	Ensure a clean worker shutdown if IPC pipes are closed (#51 [https://github.com/richardsheridan/trio-parallel/issues/51])

Misc

	#40 [https://github.com/richardsheridan/trio-parallel/issues/40], #42 [https://github.com/richardsheridan/trio-parallel/issues/42], #44 [https://github.com/richardsheridan/trio-parallel/issues/44]

trio-parallel 0.4.0 (2021-03-25)

Bugfixes

	Correctly handle the case where os.cpu_count [https://docs.python.org/3/library/os.html#os.cpu_count] returns None [https://docs.python.org/3/library/constants.html#None]. (#32 [https://github.com/richardsheridan/trio-parallel/issues/32])

	Ignore keyboard interrupt (SIGINT) in workers to ensure correct cancellation semantics and clean shutdown on CTRL+C. (#35 [https://github.com/richardsheridan/trio-parallel/issues/35])

Misc

	#27 [https://github.com/richardsheridan/trio-parallel/issues/27]

trio-parallel 0.3.0 (2021-02-21)

Bugfixes

	Fixed an underlying race condition in IPC. Not a critical bugfix, as it should not be triggered in practice. (#15 [https://github.com/richardsheridan/trio-parallel/issues/15])

	Reduce the production of zombie children on Unix systems (#20 [https://github.com/richardsheridan/trio-parallel/issues/20])

	Close internal race condition when waiting for subprocess exit codes on macOS. (#23 [https://github.com/richardsheridan/trio-parallel/issues/23])

	Avoid a race condition leading to deadlocks when a worker process is killed right after receiving work. (#25 [https://github.com/richardsheridan/trio-parallel/issues/25])

Improved Documentation

	Reorganized documentation for less redundancy and more clarity (#16 [https://github.com/richardsheridan/trio-parallel/issues/16])

trio-parallel 0.2.0 (2021-02-02)

Bugfixes

	Changed subprocess context to explicitly always spawn new processes (#5 [https://github.com/richardsheridan/trio-parallel/issues/5])

	Changed synchronization scheme to achieve full passing tests on

	Windows, Linux, MacOS

	CPython 3.6, 3.7, 3.8, 3.9

	Pypy 3.6, 3.7, 3.7-nightly

Note Pypy on Windows is not supported here or by Trio (#10 [https://github.com/richardsheridan/trio-parallel/issues/10])

Index

 A
 | B
 | C
 | D
 | O
 | R
 | W

A

 	
 	atexit_shutdown_grace_period() (in module trio_parallel)

B

 	
 	BrokenWorkerError

C

 	
 	configure_default_context() (in module trio_parallel)

 	
 	current_default_worker_limiter() (in module trio_parallel)

D

 	
 	default_context_statistics() (in module trio_parallel)

O

 	
 	open_worker_context() (in module trio_parallel)

R

 	
 	run_sync() (in module trio_parallel)

 	(trio_parallel.WorkerContext method)

W

 	
 	WorkerContext (class in trio_parallel)

 	
 	WorkerType (class in trio_parallel)

 nav.xhtml

 Table of Contents

 		
 trio-parallel: CPU parallelism for Trio

 		
 Reference

 		
 Running CPU-bound functions in parallel

 		
 run_sync()

 		
 Controlling Concurrency

 		
 current_default_worker_limiter()

 		
 Cancellation and Exceptions

 		
 Cancellation

 		
 Exceptions

 		
 Signal Handling

 		
 Configuring workers

 		
 configure_default_context()

 		
 open_worker_context()

 		
 WorkerContext

 		
 WorkerType

 		
 Internal Esoterica

 		
 atexit_shutdown_grace_period()

 		
 default_context_statistics()

 		
 Example concurrency patterns

 		
 Parallel, ordered map and gather

 		
 Async parallel processing pipeline

 		
 Release history

 		
 trio-parallel 1.2.2 (2024-04-24)

 		
 Bugfixes

 		
 trio-parallel 1.2.1 (2023-11-04)

 		
 Bugfixes

 		
 Deprecations and Removals

 		
 trio-parallel 1.2.0 (2022-10-29)

 		
 Features

 		
 Bugfixes

 		
 trio-parallel 1.1.0 (2022-09-18)

 		
 Features

 		
 Bugfixes

 		
 Deprecations and Removals

 		
 trio-parallel 1.0.0 (2021-12-04)

 		
 Bugfixes

 		
 Improved Documentation

 		
 trio-parallel 1.0.0b0 (2021-11-12)

 		
 Features

 		
 trio-parallel 1.0.0a2 (2021-10-08)

 		
 Features

 		
 trio-parallel 1.0.0a1 (2021-09-05)

 		
 Features

 		
 trio-parallel 1.0.0a0 (2021-07-22)

 		
 Features

 		
 trio-parallel 0.5.1 (2021-05-05)

 		
 Bugfixes

 		
 trio-parallel 0.5.0 (2021-05-02)

 		
 Features

 		
 Bugfixes

 		
 Misc

 		
 trio-parallel 0.4.0 (2021-03-25)

 		
 Bugfixes

 		
 Misc

 		
 trio-parallel 0.3.0 (2021-02-21)

 		
 Bugfixes

 		
 Improved Documentation

 		
 trio-parallel 0.2.0 (2021-02-02)

 		
 Bugfixes

_static/plus.png

_static/file.png

_static/minus.png

